2,087 research outputs found

    Making use of the complementarity of hydropower and variable renewable energy in Latin America: A probabilistic analysis

    Get PDF
    Latin America is one of the regions most vulnerable to the effects of climate variability on hydropower generation. Hydropower is the backbone of the Latin-American power system and a key technology for ensuring low-carbon power generation in the region. Despite its importance, our understanding of the impact and likelihood of seasonal variability and of long-term phenomena such as the El Niño Southern Oscillation (ENSO) on hydropower is limited. There is an essential need to understand how likely these effects are and to identify measures to counterbalance them. A combination of wind, solar, and hydropower offers the potential to mitigate the impact of climate variability on renewable power generation and thus improve its reliability. Here we present a modeling framework to quantify the potential benefits of such combination. The modeling framework relies on a meteorological reanalysis dataset, large-scale renewable power generation models, and statistic models. We consider the countries with the largest hydropower capacity in the region, namely Argentina, Brazil, Colombia, Mexico, and Venezuela. We examine whether the probability of a production deficit is reduced when all renewable resources are combined compared to a scenario based solely on hydropower, especially during droughts. The approach presented allows for the first time an in-depth analysis of the benefits of a combined wind, solar, and hydropower-based power generation under different geographical conditions in altered ENSO phases. Our results suggest that—depending on the country and the percentile—the hydropower generated during drought ENSO phases could be up to 50% lower than that during neutral phases. The countries most affected are Colombia and Venezuela, while the reduction is somewhat less severe in Argentina, Brazil, and Mexico. Combining hydropower with variable renewable energy (VRE) offers the potential to reduce the risk of a power deficit during the 10th percentile of the driest months of the year, both in drought and neutral phases. Argentina is the country with the most effective combination of resources to mitigate a power deficit, as each MW of installed VRE generates 0.218 GWh of additional power. It is followed by Brazil and Mexico with 0.185 GWh per MW of VRE and by Venezuela and Colombia with 0.128–0.098 GWh/MW of VRE, respectively. These results can contribute to informing future decisions on capacity planning and regional transmission grids

    Strategic planning of biomass and bioenergy technologies

    Get PDF
    Il dimensionamento di sistemi energetici sostenibili e rispettosi dell'ambiente è una sfida fondamentale che deve essere affrontata dalle nazioni di tutto il mondo. Questa sfida è particolarmente rilevante nei paesi in via di sviluppo, in quanto vi sono aree remote ancora non elettrificate, vi è una eccessiva dipendenza da fonti convenzionali di energia, si registra una carenza di risorse finanziarie e non sono sviluppate ed implementate adeguate politiche e regolamentazioni. L'obiettivo di questa tesi è lo sviluppo di una metodologia per la pianificazione strategica delle tecnologie basate su biomasse e bioenergie in genere, nei paesi in via di sviluppo. L'approccio seguito è quello di iniziare da un approccio generale e poi passare ad uno specifico contesto di applicazione, che nel caso in esame è la Colombia. Le metodologie sviluppate ed applicate nella tesi sono relative a quattro aree principali. In primo luogo, viene sviluppato un metodo per stimare l’attuale potenziale energetico della biomassa e la sua incertezza a livello nazionale, per tenere conto del fatto che la disponibilità e la qualità dei dati possono essere limitati. A questo scopo, si propone un approccio focalizzato sul tipo di risorsa e bottom-up, con analisi statistica che utilizza un algoritmo Monte Carlo. In secondo luogo, viene sviluppato un metodo per stimare il futuro potenziale energetico della biomassa e il cambiamento di uso del suolo, per paesi il cui mercato nazionale non influenza i mercati internazionali. Il metodo proposto è una combinazione di approcci focalizzati sul tipo di risorsa e guidati dalla domanda, in cui l'energia potenziale della biomassa è influenzato dalla domanda interna, dall’uso del suolo, dall'economia, dalla macroeconomia e dall'uso di biocarburanti globale. In terzo luogo, la tesi propone un metodo per tracciare la roadmap per l’utilizzo di tecnologie energetiche, adattato alle condizioni dei paesi in via di sviluppo, e una nuova strategia per costruire il consenso sulla base del metodo Delphi. Questi strumenti sono impiegati per la definizione di un piano per implementare tecnologie bioenergetiche sostenibili in Colombia fino al 2030. Il piano è costituito da una serie di obiettivi a lungo termine, di tappe, di barriere e di “azioni” individuate da più di 30 esperti per le diverse aree tecnologiche. In quarto luogo, viene sviluppato un modello generale di simulazione per valutare gli impatti che l’implementazione a lungo termine delle tecnologie bioenergetiche potrebbe causare su domanda e richiesta di energia, emissioni e uso del territorio a livello nazionale. Il metodo combina elementi sia quantitativi sia qualitativi. L'elemento qualitativo integra i risultati della tecnologia di sviluppo della roadmap con analisi di scenari per indagare varie storie con diverse ipotesi circa le azioni di politica energetica da attuare. L'elemento quantitativo comprende quattro strumenti integrati, vale a dire il modello di sistema energetico (ESM), l'uso del suolo e un modello di mercato (LUTM), un modello economico e un modello che tiene conto del clima. Questi strumenti servono per quantificare in modo integrato gli impatti conseguenti all’attuazione di diversi scenari sul sistema energetico, le emissioni e l’uso del suolo a livello nazionale, così come i legami con l'economia e il clima. I risultati dello studio per il caso della Colombia indicano che la diffusione di tecnologie per la produzione di biometano, la generazione di energia e la cogenerazione dovrebbero essere le tecnologie sulle quali investire per il futuro, in quanto permettono di ridurre le emissioni di metano, la sostituzione dei combustibili fossili, la riduzione delle emissioni di CO2 e la massimizzazione della riduzione di gas serra per suolo incrementale utilizzato per la produzione di bioenergia.The design of sustainable, environmentally friendly energy systems which have adequate capacity is a critical challenge faced by nations across the globe. This challenge is compounded in developing countries, which contain with remote areas yet to be connected to the grid, an over- dependence on conventional sources of energy, a shortage of financial resources, and, limited supporting policies and legislation. The objective of this thesis is to develop methods for strategic planning of biomass and bioenergy technologies in developing countries. The approach followed is to start from the general and move to the specific. After a general formulation of methods, an exemplary case study of Colombia is presented. The formulated methods cover four main areas. Firstly, a method to estimate the current biomass energy potential and its uncertainty at a country level is formulated when availability and quality of data are limited. For this purpose, a bottom-up resource-focused approach with statistical analysis using a Monte Carlo algorithm is proposed. Secondly, a method to estimate the future biomass energy potential and land use change is formulated for countries with domestic markets unable to influence international markets. The proposed method is a combination of resource-focused and demand driven approaches, in which the biomass energy potential is influenced by the internal demand, land use, economics, macroeconomics and global biofuel use. Thirdly, a method for energy technology roadmapping adapted to the conditions of developing countries and a new strategy to build consensus based on the Delphi method are formulated. These tools are employed for defining a plan to deploy sustainable bioenergy technologies in Colombia until 2030. The plan consists of a set of long-term goals, milestones, barriers and action items identified by over 30 experts for different bioenergy technology areas. Fourthly, a modeling framework to evaluate the impacts that long-term deployment of bioenergy technologies might cause on the energy supply and demand, emissions and land use at a country level is proposed. The method combines a quantitative and a qualitative element. The qualitative element integrates outcomes of technology roadmapping with scenario analysis to investigate various storylines with different underlying assumptions on policy measures. The quantitative element comprises four integrated tools, namely the energy system model (ESM), the land use and trade model (LUTM), an economic model, and an external climate model. These tools quantify in an integrated manner the impacts of implementing different scenarios on the energy system, emissions and land-use at a country level as well as the linkages with the economy and climate. Results of the study case of Colombia suggest that the deployment of technologies for biomethane production, power generation & CHP should be prioritized. These technology routes avoid methane release, substitute fossil fuels, reduce CO2 emissions and maximize the GHG reductions per incremental land of bioenergy

    Evaluación de la política comercial sobre el mercado del sorgo en México, 2000

    Get PDF
    La fuerte dependencia de las importaciones desde Estados Unidos y la reciente polémica en relación con los efectos negativos del Tratado de Libre Comercio de América del Norte, justifican la evaluación del impacto de políticas comerciales alternativas sobre el mercado del sorgo (Sorghum vulgare Pers) en México. Para analizar estos efectos se validó un modelo de programación cuadrática para producción, consumo e importaciones del grano de mayo de 1999 a abril de 2000. Los resultados del modelo validado indican que en 1999/2000, la producción, las importaciones y el consumo de sorgo fueron 6.1, 4.6 y 10.7 millones t. Si en 1999/2000 se hubiera permitido la importación de sólo 2.5 millones t, la producción y el consumo de sorgo hubieran sido mayor y menor en 1.4 y 0.7 millones de t, en relación con los niveles observados en ese año. Por el contrario, si se hubiera permitido el libre comercio, la producción hubiera sido 5.4 millones t, en tanto el consumo y las importaciones habrían aumentando en 0.3 y 1.0 millones t, en relación con los niveles de 1999/2000. Los beneficiados con la política de restricción de las importaciones habrían sido los productores, y los perjudicados los importadores y los consumidores. Con la política de libre comercio los beneficiados hubieran sido los consumidores e importadores, en tanto que los productores habrían resultado menos perjudicados

    System analysis of the bio-based economy in Colombia:A bottom-up energy system model and scenario analysis

    Get PDF
    The transition to a sustainable bio-based economy is perceived as a valid path towards low carbon development for emerging economies that have rich biomass resources. In the case of Colombia, the role of biomass has been tackled through qualitative roadmaps and regional climate policy assessments. However, neither of these approaches have systematically addressed the complexity of the bio-based economy in the wider context of emission mitigation and energy and chemicals supply. In response to this limitation, we extended a bottom-up energy system optimization model by adding a comprehensive database of novel bio-based value chains. We included advanced road and aviation biofuels, (bio)chemicals, bioenergy with carbon capture and storage (BECCS), and integrated biorefinery configurations. A scenario analysis was conducted for the period 2015–2050, which reflected uncertainties in capacity for technological learning, climate policy ambitions, and land availability for energy crops. Our results indicate that biomass can play an important, even if variable, role in supplying 315–760 PJ/y of modern bio-based products. In pursuit of a deep decarbonization trajectory, the largescale mobilization of biomass resources can reduce the cost of the energy system by up to 11 billion $/y, the marginal abatement cost by 62%, and the potential reliance on imports of oil and chemicals in the future. The mitigation potential of BECCS can reach 24–29% of the cumulative avoided emissions between 2015 and 2050. The proposed system analysis framework can provide detailed quantitative information on the role of biomass in low carbon development of emerging economies

    System analysis of the bio-based economy in Colombia: A bottom-up energy system model and scenario analysis

    Get PDF
    The transition to a sustainable bio‐based economy is perceived as a valid path towards low‐carbon development for emerging economies that have rich biomass resources. In the case of Colombia, the role of biomass has been tackled through qualitative roadmaps and regional climate policy assessments. However, neither of these approaches has addressed the complexity of the bio‐based economy systematically in the wider context of emission mitigation and energy and chemicals supply. In response to this limitation, we extended a bottom‐up energy system optimization model by adding a comprehensive database of novel bio‐based value chains. We included advanced road and aviation biofuels, (bio)chemicals, bioenergy with carbon capture and storage (BECCS), and integrated biorefinery configurations. A scenario analysis was conducted for the period 2015–2050, which reflected uncertainties in the capacity for technological learning, climate policy ambitions, and land availability for energy crops. Our results indicate that biomass can play an important, even if variable, role in supplying 315–760 PJ/y of modern bio‐based products. In pursuit of a deep decarbonization trajectory, the large‐scale mobilization of biomass resources can reduce the cost of the energy system by up to 11 billion $/year, the marginal abatement cost by 62%, and the potential reliance on imports of oil and chemicals in the future. The mitigation potential of BECCS can reach 24–29% of the cumulative avoided emissions between 2015 and 2050. The proposed system analysis framework can provide detailed quantitative information on the role of biomass in low carbon development of emerging economies

    METHODOLOGY FOR ESTIMATING BIOMASS ENERGY POTENTIAL AND ITS APPLICATION TO COLOMBIA

    Get PDF
    This paper presents a methodology to estimate the biomass energy potential and its associated uncertainty at a country level when quality and availability of data are limited. The current biomass energy potential in Colombia is assessed following the proposed methodology and results are compared to existing assessment studies. The proposed methodology is a bottom-up resource-focused approach with statistical analysis that uses a Monte Carlo algorithm to stochastically estimate the theoretical and the technical biomass energy potential. The paper also includes a proposed approach to quantify uncertainty combining a probabilistic propagation of uncertainty, a sensitivity analysis and a set of disaggregated sub-models to estimate reliability of predictions and reduce the associated uncertainty. Results predict a theoretical energy potential of 0.744 EJ and a technical potential of 0.059 EJ in 2010, which might account for 1.2% of the annual primary energy production (4.93 EJ)

    Bioenergy technology roadmap for Colombia

    No full text
    The importance of using bioenergy for reducing oil dependence and greenhouse gas (GHG) emissions, diversifying the energy portfolio and supporting rural development is been increasingly recognized in Colombia. Against this background, this roadmap provides a long-term vision and goals to sustainably deploy biofuel and biomass technologies in Colombia until 2030. The roadmap identifies barriers to bioenergy deployment and suggests specific actions that should be taken by stakeholders to accomplish the proposed goals. It adopts a methodology from the International Energy Agency for developing technology roadmaps and combines detailed energy modeling with experienced advice from over 30 bioenergy experts from the government, academia, industry and non-governmental organizations.Based on expert feedback, the roadmap defines two visions, which are translated into two scenarios for detailed evaluation:The first vision, which is analyzed in Scenario I, focuses on new technologies and targets their deployment for the production of biomethane, biomass-based power generation and combined-heat-and-power (CHP). It fixes the current mandate for blending first generation liquid biofuels. The second vision, which is analyzed in Scenario II, combines new and traditional technologies and targets a combination of new technologies for the production of biomethane, electricity and CHP with further growth of first generation biofuels. A detailed set of goals, milestones, technologies, policies and barriers are defined for each of the two visions. Long-term goals in the bioenergy area include: Biodiesel: increase the quota mandate to B20 in 2020 and B30 in 2030. Bioethanol: a) increase the quota mandate to E20 in 2025 and b) implement an E85 fuel program in 2030. Renewable diesel: achieve a 10% contribution (on an energy basis) of renewable diesel to the total diesel fuel production in 2030. Biomethane: use 5% of biomass residues and animal waste resources nationwide to produce biomethane to be injected into the natural gas network by 2030. Power generation and CHP: a) achieve a renewable power target of 10% by 2025, b) use 5% of the biogas from animal waste and municipal water treatment plants nationwide by 2030, c) use 100% of the biogas produced in the water treatment process of biodiesel production plants by 2030, d) use 10% of the municipal landfill gas produced nationwide by 2030. A detailed energy system model for Colombia is set up and used to evaluate impacts on energy demand, supply, infrastructure and GHG emissions for Scenarios I and II and a baseline scenario that assumes no change in policies or deployment of new technologies. A land use and trade model that is linked to the energy system model is used to estimate land requirements for accomplishing the roadmap targets. A subset of Scenario II (Scenario II with expansion) considers a significant expansion in the cultivation of land beyond the Valley of the Cauca River.Results for the baseline show significant reductions in the share of bioenergy in the primary energy demand and various sectors. In contrast, Scenarios I and II are characterized by an increased share of bioenergy. In both scenarios, the bioenergy share for power generation and natural gas supply grows to about 6% in 2030. However, the share of bioenergy in the primary energy demand still declines to about 10% in 2030.Relative to the baseline, in Scenario I, bioenergy-induced emissions reduction amounts to about 11 mio tons of CO2-eq. and savings in fossil fuels of 2 mio tons of oil equivalent (TOE). The share of bioenergy in road transport remains unchanged. In Scenario I, an increase in land for producing liquid biofuels and woodfuel to 0.67 mio ha by 2030 is expected. Scenario I can accomplish long-term emission targets with available land and turns out to be the most effective scenario in terms of emission reduction per additional hectare of land. In Scenario II bioenergy-induced emissions reduction relative to the baseline amounts to about 20 mio tons of CO2-eq. and savings in fossil fuels of about 4.5 mio TOE (Scenario II with expansion: 22 mio tons of CO2-eq. and 5.4 mio TOE). The share of bioenergy in road transport grows to 24%. An increase in land for producing liquid biofuels and woodfuel to 1.1 mio ha by 2030 is expected in Scenario II (Scenario II with expansion: 1.3 mio ha). However, emissions reductions per additional hectare of land are about four to five times less compared to Scenario I. The roadmap shows that the most effective policy measures to reduce greenhouse gas emissions would address power generation and CHP applications, which account for more than 50% in emission reductions. The bulk of these reductions in emissions come from avoiding methane release via landfill gas and biogas from animal waste through combustion in reciprocating engines, followed by CO2 emission reduction in biomass-based power generation, and policies on first generation biofuels (i.e. bioethanol, biodiesel and renewable diesel).</p

    Celosía set di Lucidi, juego de transparencias desde nuevas piezas cerámicas: Lattice set di Lucidi, transparency game from new ceramic pieces

    Get PDF
    In architecture it is necessary to always articulate the guidelines of comfort in the designs, and these can be very delimited according to the comfort one wishes to solve, so to speak of thermal comfort can result from the diverse use of passive and active techniques of bioclimatic Focused on the solution of passive techniques, the lattices are presented, as a technique of ventilation and natural lighting to the architectural spaces, but at the same time it is a technique with little innovation and technological updating, for which reason the present investigation proposes the design of lattices as passive thermal comfort techniques applied to facades from the combination of metal structures that serve as an assembly between the modules. The design starts from a methodology of three phases, which present analysis of the context, documentary research, and design proposal, articulating specialized software such as AutoCAD and Revit for modeling and solar analysis, and applying similar research results in the planimetry of the piece. The result is a design of a lattice without enamel that can be used from non-structural modules such as the skin of the building, which has a particular design that responds to thermal comfort components and technical and technological innovation in the San José de Cúcuta region, in Norte de Santander.En la arquitectura es necesario articular siempre los lineamientos de confort en los diseños, y estos pueden estar muy delimitados según sea el bienestar que se desee resolver, por lo que hablar de confort térmico puede dar como resultado el uso diversas de técnicas pasivas y activas de bioclimática. Enfocado en la solución de técnicas pasivas se presentan las celosías, como método de ventilación e iluminación natural en los espacios arquitectónicos, pero que a su vez es un sistema con poca innovación y actualización tecnológica, por lo que la presente investigación plantea el diseño de celosías como técnicas pasivas para la comodidad térmica aplicado en fachadas desde la combinación de estructuras metálicas que cumplan la función de ensamble entre los módulos. El diseño parte desde una metodología de tres fases, que presentan análisis del contexto, investigación documental, y propuesta de diseño, articulando software especializados como AutoCAD Y Revit para el modelado y análisis solar, aplicando resultados de investigaciones similares en la planimetría de la pieza. El resultado es de diseño de una celosía sin esmalte que puede ser usada desde módulos no estructurales como la piel del edificio, que presenta un desempeño particular que responde a componentes de confort térmico y de innovación técnica y tecnológica en la región de San José de Cúcuta, en Norte de Santander

    Celosía set di Lucidi, juego de transparencias desde nuevas piezas cerámicas: Lattice set di Lucidi, transparency game from new ceramic pieces

    Get PDF
    In architecture it is necessary to always articulate the guidelines of comfort in the designs, and these can be very delimited according to the comfort one wishes to solve, so to speak of thermal comfort can result from the diverse use of passive and active techniques of bioclimatic Focused on the solution of passive techniques, the lattices are presented, as a technique of ventilation and natural lighting to the architectural spaces, but at the same time it is a technique with little innovation and technological updating, for which reason the present investigation proposes the design of lattices as passive thermal comfort techniques applied to facades from the combination of metal structures that serve as an assembly between the modules. The design starts from a methodology of three phases, which present analysis of the context, documentary research, and design proposal, articulating specialized software such as AutoCAD and Revit for modeling and solar analysis, and applying similar research results in the planimetry of the piece. The result is a design of a lattice without enamel that can be used from non-structural modules such as the skin of the building, which has a particular design that responds to thermal comfort components and technical and technological innovation in the San José de Cúcuta region, in Norte de Santander.En la arquitectura es necesario articular siempre los lineamientos de confort en los diseños, y estos pueden estar muy delimitados según sea el bienestar que se desee resolver, por lo que hablar de confort térmico puede dar como resultado el uso diversas de técnicas pasivas y activas de bioclimática. Enfocado en la solución de técnicas pasivas se presentan las celosías, como método de ventilación e iluminación natural en los espacios arquitectónicos, pero que a su vez es un sistema con poca innovación y actualización tecnológica, por lo que la presente investigación plantea el diseño de celosías como técnicas pasivas para la comodidad térmica aplicado en fachadas desde la combinación de estructuras metálicas que cumplan la función de ensamble entre los módulos. El diseño parte desde una metodología de tres fases, que presentan análisis del contexto, investigación documental, y propuesta de diseño, articulando software especializados como AutoCAD Y Revit para el modelado y análisis solar, aplicando resultados de investigaciones similares en la planimetría de la pieza. El resultado es de diseño de una celosía sin esmalte que puede ser usada desde módulos no estructurales como la piel del edificio, que presenta un desempeño particular que responde a componentes de confort térmico y de innovación técnica y tecnológica en la región de San José de Cúcuta, en Norte de Santander
    corecore